Nonlinear Filters Based on Taylor Series Expansions∗
نویسندگان
چکیده
The nonlinear filters based on Taylor series approximation are broadly used for computational simplicity, even though their filtering estimates are clearly biased. In this paper, first, we analyze what is approximated when we apply the expanded nonlinear functions to the standard linear recursive Kalman filter algorithm. Next, since the state variables αt and αt−1 are approximated as a conditional normal distribution given information up to time t − 1 (i.e., It−1) in approximation of the Taylor series expansion, it might be appropriate to evaluate each expectation by generating normal random numbers of αt and αt−1 given It−1 and those of the error terms 2t and ηt. Thus, we propose the Monte-Carlo simulation filter using normal random draws. Finally we perform two Monte-Carlo experiments, where we obtain the result that the Monte-Carlo simulation filter has a superior performance over the nonlinear filters such as the extended Kalman filter and the second-order nonlinear filter.
منابع مشابه
NUMERICAL SOLUTION OF THE MOST GENERAL NONLINEAR FREDHOLM INTEGRO-DIFFERENTIAL-DIFFERENCE EQUATIONS BY USING TAYLOR POLYNOMIAL APPROACH
In this study, a Taylor method is developed for numerically solving the high-order most general nonlinear Fredholm integro-differential-difference equations in terms of Taylor expansions. The method is based on transferring the equation and conditions into the matrix equations which leads to solve a system of nonlinear algebraic equations with the unknown Taylor coefficients. Also, we test the ...
متن کاملAN ANALYTICAL SOLUTION FOR DIFFUSION AND NONLINEAR UPTAKE OF OXYGEN IN THE RETINA
A simple mathematical model of steady state oxygen distribution subject to diffusive transport and non- linear uptake in a retinal cylinder has been developed. The approximate analytical solution to a reaction- diffusion equation are obtained by using series expansions. The computational results for the scaled variables are presented through graphs. The effect of the important parameters (1) d...
متن کاملThe combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملAlgebraic Characterizations of Nonlinear Digital Filters
The book, Fundamentals of Nonlinear Digital Filtering, by Jaako Astola and Pauli Kuosmanen presents both a useful selection guide for practitioners seeking a signal processing solution and a valuable panoramic perspective for theoreticians interested in the underlying principles on which nonlinear digital filters are based. For example, the results presented in their book make it clear that mos...
متن کاملModeling of Nonlinear Systems with Friction Structure Using Multivariable Taylor Series Expansion
The major aim of this article is modeling of nonlinear systems with friction structure that, thismethod is essentially extended based on taylore expansion polynomial. So in this study, thetaylore expansion was extended in the generalized form for the differential equations of the statespaceform. The proposed structure is based on multi independent variables taylore extended.According to the pro...
متن کامل